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This work deals with the quantum dynamics of a narrow-band particle 
interacting with phonons and static disorder. The present theory is exact in the 
limit of small bandwidth compared with the Debye energy, and covers various 
regimes in the parameter space of temperature and disorder strength. Therefore, 
the theory provides a unified framework for studying when and how the particle 
motion changes from coherent bandlike behavior to incoherent hopping as the 
temperature and/or disorder strength are increased. The theory also includes 
the double-well problem as a special case, where rather complete description of 
the particle motion is obtained. 

KEY WORDS: Quantum coherence; quantum diffusion; small polaron. 

1. I N T R O D U C T I O N  

In this paper ,  we s tudy the q u a n t u m  dynamics  of a n a r r o w - b a n d  par t ic le  
moving  in the bulk  or  on the surface of a crystal l ine solid. We  are 
interested in the case where only  the lowest  level of each po ten t ia l  well can 

be occupied,  and  where the par t ic le  moves  f rom one well to the next 
th rough  q u a n t u m  tunneling.  We are  concerned  with the influence of 
phonons  and  stat ic  d i so rde r  on the par t ic le  mot ion .  In  par t icu lar ,  we want  
to know when and  how the par t ic le  changes its behav io r  f rom coherent  
band l ike  m o t i o n  to incoherent  hopping.  

This is an old  p rob l em with last ing interest.  I t  has been the subject  of 
sma l l -po la ron  theories  (1-7) and  is one of  the central  issues in the q u a n t u m  
diffusion of  l ight a toms  or  muons /8  14) In the general  context  of  q u a n t u m  
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dynamics with dissipation, the present system serves as a fine model for the 
so-called super-Ohmic coupling category. (15 22) 

The main objective of the present work is to develop a general theory 
which is exact in the limit of small bandwidth compared with the Debye 
energy of the phonons. The theory will be valid for essentially the whole 
parameter space spanned by the temperature and disorder strength. It 
therefore not only unifies earlies theories for the various regimes of the 
parameter space, but also makes it possible to investigate the intermediate 
regions where transition from coherent to incoherent motion of the particle 
takes place. 

The physics of transport phenomena usually has three levels of 
description: microscopic, macroscopic, and intermediate. On the macro- 
scopic level, one observes a hydrodynamic law such as a diffusion equation 
characterized by a diffusion constant depending on temperature, isotope 
mass, etc. On the microscopic level, one tries to single out the part of the 
microscopic system which is eventually responsible for the macroscopic 
phenomenon and which is describable by the Schr6dinger equation. These 
two worlds are connected by an intermediate level, where one describes the 
system in terms of Markovian equations involving a few degrees of 
freedom. Boltzmann equations and master equations are such examples. It 
is only on this level of description that the question of quantum coherence 
is relevant. On the microscopic level everything is coherent. On the macro- 
scopic level everything is incoherent (excluding, of course, particular 
systems such as a superfluid). We emphasize that quantum coherence is not 
equivalent to the Markovian nature in the transport equations. It has 
something to do with the quantum uncertainty between position and 
momentum. In this paper, the particle motion is termed "incoherent" if it 
is Markovian in position basis. The usual Boltzmann equation is 
Markovian only in momentum basis, and therefore describes a coherent 
motion. Further refinement of this notion will be done in the text. 

The derivation of transport equations usually starts from the 
microscopic level, following totally different routes for cases with 
qualitatively different behaviors. Unfortunately, such an approach can 
draw, at best, scattered pieces of a whole picture, and is unable to answer 
questions like how a transition from coherence to incoherence takes place. 
For example, the conventional small-polaron theory follows such a 
practice. For the low-temperature side, one starts with the renormalized 
Bloch states, and uses perturbation theory to determine their lifetimes. 
When the inverse lifetimes are smaller than the renormalized bandwidth, 
the particle motion is said to be coherent. When the inverse lifetimes are no 
longer small for high enough temperatures, it is said that the original 
picture of coherent motion breaks down. The theory for the high- 
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temperature side then takes a totally different route: one starts with the 
unperturbed site diagonal states, and then uses perturbation theory to 
calculate the rate of transitions. 

The path integral approach of Leggett et  aL (191 was designed to give 
a consistent picture of the particle motion in various regimes. Their 
noninteracting blip approximation works remarkably well for the sub- 
Ohmic and Ohmic cases, and has correctly predicted a bias-induced 
transition from coherent to incoherent tunneling for the super-Ohmic case. 
The approximation fails, however, for the intermediate region. It is valid in 
both the zero-bias limit and the large-bias limit, but for totally different 
reasons. Recently, Gorlich et  aL (2~ made an improvement of the 
approximation, giving a correct result also for moderate bias. However, it 
is still not clear how their results may be generalized to high-temperature 
cases and multisite problems. 

In this paper, we take a different approach. We start with a path 
integral representation of the transition probability for the particle to move 
from one place to another in time t. This is a path integral defined in the 
phase space of the particle, i.e., the space spanned by the two position 
variables appearing in the particle density matrix. 3 The phase space path 
integral defines a phase space propagator (or Green function). A Dyson 
equation is then obtained by regrouping the terms of a diagrammatic 
expansion of the propagator in some small parameter to be specified below. 
The first-order approximation of the self-energy operator then reduces the 
original many-body problem involving the phonons, essentially to a single- 
particle eigenvalue problem in the phase space of the particle. (23 251 This 
provides a very convenient basis for further explorations of various regimes 
and their interconnections. 

For a heavy particle such as the hydrogen atom, the tunneling energy 
splitting is extremely small compared with the Debye energy of the lattice 
vibrations. (12'13) The ratio of the two energy scales provides us with a small 
parameter. Our theory is based on a systematic expansion in this small 
parameter. Truncation after the first nontrivial order should give a very 
good approximation. This is somewhat in line with the philosophy of the 
small polaron theory of Holstein, (1) which also treats the tunneling energy 
splitting as a small parameter, but we do not make a p r i o r i  assumptions on 
the character of the particle motion (band motion or hopping). The non- 
interacting-blip approximation of Leggett et  al. (19~ was also designed to 
take advantage of this small parameter, but our theory is more systematic. 

3 The double positional space here is equivalent to the Wigner phase space, whose position 
coordinate is the average of the two positions, and whose momentum coordinate is the 
Fourier conjugate of the relative position. The Wigner phase space is the quantum analog 
of the classical phase space. 

822/65/1-2~21 
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Equipped with our general theory, we have studied the particle motion 
in various regimes: low temperature versus high temperature, weak static 
disorder versus strong disorder, and two wells versus an array of wells. 
We have rederived the transport equations in various extremes of the 
parameter space and revealed once again the fact that the particle motion 
is coherent at temperatures low compared with the Debye temperature and 
with site energy disorder weak compared with the renormalized tunneling 
energy splitting, whereas the motion is incoherent at high temperature or 
with strong disorder. The results on decay rates and diffusion constants 
have been reproduced exactly. We have given a very detailed analysis for 
the two-well case, and have obtained rather complete results for the time 
dependence of the interwell transition probability. 

The organization of the paper is as follows. In Section 2, we set up our 
system Hamiltonian, define our problem, and derive an exact path integral 
expression for the transition probability. In Section3, we make a 
systematic expansion of the expression, and derive a simple yet general 
result, useful for later explorations. Section 4 is devoted to the two-well 
case, where the effects of temperature and disorder are studied in great 
detail. In Section 5, we study the case of low temperature and large site 
energy disorder for an array of wells. In Section 6, we consider the 
translationally invariant case at low and high temperatures. Finally, we 
discuss and conclude in Section 7. 

2. GENERAL FORMULATION 

2.1. The System and the Problem 

We begin with a discussion of the Hamiltonian governing the motion 
of our system. Consider first the case of an external particle moving in the 
balk or on the surface of a crystalline solid. A particular example in our 
mind is a hydrogen atom (or its isotopes) moving on the tungsten 
surface. (12'13'26'27) When the lattice atoms are fixed at their equilibrium 
positions, the particle sees a periodic array of potential wells. We assume 
that the temperature is sufficiently low such that only the lowest level of 
each potential well can be occupied. This is appropriately described by a 
tight-binding model. Let Ix)  be the Wannier state corresponding to a well 
centered at x, and the particle tunnels from one well to another according to 

Hp ] x ) = ~  [ x ) + A  ~ I x + l )  (2.1) 
1 

where e is the site energy and • the tunneling energy splitting, and I is a 
vector connecting nearest neighboring sites. 
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The motion of the lattice atoms is described by a phonon field whose 
Hamiltonian in the absence of the external particle is given by 

Hc = Z hcoka~ak (2.2) 
k 

where a~ creates a phonon of wave vector k (a mode branch index is 
omitted for simpler notations). When the lattice atoms are displaced from 
their equilibrium positions, the site energies of the particle also change. To 
first order in these displacement, the site energy ~ changes by 

1 
H, = ~ ~ g(k) eikX(ak + a*_k) (2.3) 

~/N k 

where N is the total number of lattice atoms. The actual form of g(k) 
depends on the type of interaction between the particle and the lattice 
atoms. (28) In an ionic crystal, the particle interacts strongly with the optical 
longitudinal phonons through the dipole field that they generate. The 
coupling function takes the form g(k) = ~:/k, where ~c is independent of the 
particle mass. In a piezoelectric material, the particle also interacts strongly 
with the acoustical longitudinal phonons. The coupling function is g(k)= 
X(~)/X/~k, and it is again independent of the particle mass. In Appendix A, 
we give a derivation of (2.3) for a short-ranged repulsive interaction, where 
we find that the particle interacts with the acoustical longitudinal phonons 
with a coupling function g(k) ~ k/x/--~k for small k. The overall energy scale 
of the coupling is of the order of 

( h ~ 1/2 
(2.4) 

In this expression, 6e is the energy level spacing in a well, M is the mass 
of the lattice atoms, cod is the Debye frequency of the lattice, and l is the 
lattice constant. The coupling strongly depends on the particle mass 
through the level spacing 6e. 

If (2.3) is the only form of particle-phonon interaction, our system 
Hamiltonian is then given by 

Hto t = Hp + HL + HI (2.5) 

Before we proceed further, we would like to remark on the reality of this 
Hamiltonian. The reduction of the original continuous system to the tight- 
binding form has been worked out in various ways. Sethna (3~ has given a 
quite detailed analysis, showing that the different reduction schemes are 
equally valid, but the interpretation of A may be different. Our interpreta- 
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tion of A as the bare tunneling amplitude relies on the assumption that the 
intrawall level spacing is large compared with ka T and with the Debye 
energy. Second, the hopping amplitude A may also have an explicit 
dependence on the positions of the lattice atoms and therefore give rise to 
an off-diagonal coupling to the phonons. This would give rise to the so- 
called "effect of fluctuation preparation of barrier. ''(3~ It is estimated, 
however, that this effect is not important for a low-mass particle, such as 
a hydrogen atom, moving on a heavy substrate, such as the tungsten 
metal.(31/ 

The Hamiltonian (2.5) is translationally invariant. In our later discus- 
sions, we will, however, generalize our system to include situations without 
translational invariance: (1) the site energies may have a positional 
dependence, and (2) only a subset of the sites may be accessible to the 
particle. We thus modify (2.1) to 

Hp I x ) = e x  I x ) + A  ~ I x + I )  (2.6) 
l 

where {x } is the tight-binding lattice or a subset of it. Due to the smallness 
of the tunneling energy splitting, static disorder due to impurities or strain 
can play an important role. Also, the inclusion of a two-site case allows for 
a very detailed analysis of the fundamental step of the particle motion, and 
allows for direct comparison with results in the literature. 

We wish to study the following problem. Suppose the particle was at 
x0 at time t = 0, and the phonons were in equilibrium at temperature T 
with the particle fixed at Xo; we ask for the probability of finding the 
particle at x s at later times, regardless of the final states of the phonon field. 
It is, however, more convenient to pose the problem in an alternative but 
equivalent way. (19) We take a time to in the distant past. We set up the 
initial distribution of the system as 

JOtot(/0) = I x o ~ ( x o l  e BHL/tr(e -€ (2.7) 

where fl = 1/(kB T). We then allow the system to evolve according to 

Htot(t) = He(t) + HL + HI (2.8) 

where He(t) is the same as given in (2.6), but with A replaced by AO(t), 
with O(t) being the unit step function. We finally take to--* -oo ,  and ask 
for the probability P(x s,  Xo, t) of finding the particle at xy at time t > 0. 
The evolution of the system in the infinite time interval (to < t < 0) should 
have prepared the system at t = 0 in equilibrium with the particle fixed 
at Xo. 
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2.2. Path Integral Expression for P(xt ,  xo, t) 

In this subsection, we will derive a path integral expression for the 
probability P(x I, x 0, t). The mathematical details will be presented in 
Appendix B and C and references therein. Here we just illustrate the basic 
ideas and establish notations used throughout this paper. It is sufficient to 
know the reduced density matrix p(t) for the particle, defined as the total 
density matrix of the system with the phonon degrees of freedom traced 
out. In the absence of the particle phonon interactions, the reduced density 
matrix satisfies the Liouviltian equation 

8 
8t p(x, y, t) = ~ de(x ,  y; x', y'; t) p(x', y', t) (2.9) 

x ~ y  ' 

where ~ e  is the Liouvillian operator corresponding to the particle 
Hamiltonian Hp(t), defined as 

1 
Lfp(x, y; x', y'; t ) = ~  ( (x l  H p ( t ) I x ' ) ( y ' l y ) -  ( x l x ' ) ( y ' l  Hp(t ) lY)}  

(2.10) 

which is nothing but the commutator [H~,(t), .]/(ih). 
The Liouvillian equation (2.9) has the same linear structure as the 

Schr6dinger equation. The real space x is replaced with the phase space 
(x, y) (see footnote 3). The wave function is replaced with the density 
matrix. The Hamiltonian is replaced with the Liouvillian. Therefore, all the 
algebraic techniques developed for solving Schr6dinger equations can be 
transplanted here. In order to simplify notations, from now on we denote 
the pair (x ,y)  by z, so that p(z, t)= p(x, y, t) and ~p(z , z ' , t )=  
5~ y; x', y'; t). Also, it will be convenient to introduce a "bra-ket" nota- 
tion [not to be confused with those for the states as in (2.10)] for the 
quantities in the linear equation (2.9): 

Fp(t)> ---Y~ p(z)iz) 
z 

5~p(t)= ~ Iz) ~p(Z,Z', t)(z'l  (2.11) 
z,z '  

( z l z ' )  = fizz' = 6xx,6yy, 

Equation (2.9) can then be written as 

8 
8t Ip ( t ) )=&ep( t ) Ip ( t ) )  (2.12) 
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This is integrated with the initial condition ]p(to))= ]Zo), Zo-(Xo, Xo), 
yielding 

Ip(t)) = dt. dt~ 1"'" dtl 
n = 0 0 tO 0 

x e~(t-t~ ~)... Sh(t~)[Zo> (2.13) 

where 

c~h( t ) = e - .%(t-  tol 5~h( t )e~es(t to) (2.14) 

with ~.  (time independent) corresponding [-as in (2.10)] to the site 
diagonal part of H p ( t )  and 5Oh(t) corresponding to the hopping part of 
Hp(t) .  The probability of finding the particle at Xr is then given by 

( z f l p ( t ) ) =  dt,  dt ,  1 "  dtl 
n = O  o o o {zj} 

• ( z f l ~ h ( t n ) [ z n _ l ) ( Z n _ l [ ~ h ( t n  1)lzn-2)-.-(zll~h(tx)[Zo) 

xexp 2(zi)(ti+ 1 - tj) (2.15) 
J 

where zj = (xj, yj) with Ys = xF, and 2(zj) = (zx: - %)/( ih) .  
The expression (2.15) is in fact a sum over all possible paths z~ in the 

phase space starting at z 0 and ending at zf. A particular path is specified 
by the number of jumps n, the jumping instants {tj}, and the "positions" 
{zj} between the jumps. More specifically, a path z~ of n jumps is a 
sectionally constant function of time v, given by 

z~=z j ,  for t j < ~ < t j + l ,  j=0,1, . . . ,n  (2.16) 

where t~+l= t. The weighting factor is a product of jumping amplitudes 
and the phase factors accumulated between the jumps due to the site 
energies. 

In the presence of interactions with the phonons, the expression (2.15) 
is modified by inserting an influence functional as (see Appendix B) 

( z f ] p ( t ) ) =  dt,  dt~ , . . .  dt 1 
n = o  o to o {z]} 

• ( Z f [ ~ h ( t n ) [ Z n _ l ) ( Z  n i [ ~ h ( t n - 1 ) [ Z n - - 2 ) ' ' ' ( Z l [ ~ h ( t l ) [ Z o )  

xexp 2 ( z j ) ( t j+~- t j )  exp(45[z]) (2.17) 
J 
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where 

q~[z]= - I t d z  f[ d s ~  o Nh2 

x (e 'k'~ - eikY~) [yk('r -- s)e - i~ ,_  y~(z -- s)e -*kys] 

2 
Y k ( Z )  - -  eel,Ok _ 1COS(COkZ) + e -*~'~ (2.18) 

The influence functional fully takes care of the effects of the phonons on the 
particle motion. 

With some tedious but straightforward manipulations (see 
Appendix C), the expression (2.17) can be rewritten as 

(zs[p(t) } = dt. din 1"'" dtl  
n=o {z;} 

• <<~1 2~ t~, ,><z,,_~i ~ ,  Iz,_~> ..-(z~l 2~ ]Zo> 

{ ,, } 
xexp 2(zo)tl+ ~ X(zs)(tj+l-t j) I~ FJs" 

, j =  1 n>~j>j '>~  1 

(2.19) 

In this expression ffh is the renormalized hopping Liouvillian operator, 
given by 

J 
(zl ~ Iz'} = ~  7 { ( x ] x ' + l > ( y ' [ y } -  ( x [ x ' > ( y ' i y + l > }  

A= A exp { -  l ~ j(k)coth (flh-~k) ll --e~kht 2} 
2 k  

(2.20) 

with 11 being any one lattice vector among those of the nearest neighboring 
ones {!}, and E~, is an influence factor given by 

F w - F ( t j - t j , , ~ 5 . , z  j ~,zj,,zj,_~) 

exp { - ~ J(k)[ coth(flha~k/2 ) cos (Ok(tj -- t s, )( Uj -- Us_ ~ )( U~, - U;_ ~ ) 

- i s m o % ( t j - t / ) ( V j -  Vj l)(V~-- V~_ 1)]l (2.21) 
) 
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The other quantities in the above expressions are defined as 

Ig (k ) l  2 
J ( k ) -  N(~-~ k ~ 2 

Uj = e i k ~ j -  e ikyi (2.22) 

Vj ~. eikxj ..[_ eikY3 

And it is understood that U_  1 = V_I = U, +1 - 0 .  
It is seen that the hopping energy A gets renormalized by the phonons. 

The renormalization factor is just the usual Frank-Condon factor in small- 
polaron theory. (1) In the next section, we will make a closer examination 
of the physical contents in the expressions (2.19)-(2.21), and will present a 
useful approximation scheme to evaluate them. 

3. THE "RARE HOPPING" A P P R O X I M A T I O N  

3.1. Diagram Expansion 

In the last section, we derived a path integral expression (2.19) for the 
probability of finding the particle at x s at time t > 0, assuming the particle 
was at Xo at t = 0, and that the phonons were in equilibrium with the par- 
ticle fixed at x0. The effects of the phonons on the particle motion come in 
two ways: (1) to renormalize the hopping energy A by the Frank-Condon 
factor (2.20), and (2) to dress up the particle propagation by the influence 
factors Fjj, of (2.21) for each pair of hopping events. An influence factor ~j,  
depends only on the time difference ( t j - t j , )  between the two hopping 
events, and on the "positions" immediately before and after each of the 
hops. From now on, we will use the expression (2.t9) as the formal defini- 
tion of a propagator, G(z  s ,  z o, t), even if Zo and z s are not in diagonal form. 
For diagonal (z s,  z0), G coincides with the propagator of the reduced 
density matrix. 

If the influence factors were unity, the expression (2.19) would be 
equal to 

( z f l  e (~s+ 2h)t [Zo) -  Go(z f ,  Zo, t) (3.1) 

that is, the particle would propagate under the action of the renormalized 
particle Liouvillian 

2p = LP, + 2h (3.2) 

The typical time scale between two hopping events is h/3 .  
On the other hand, an influence factor differs appreciably from unity 

only in a typical time scale of 1/~od, assuming that the coupling function 
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J(k) varies smoothly. There is, in general, a long-time tail (decaying to zero 
as an inverse power of time) in F j j , -  1 associated with the low-frequency 
end of the phonon spectrum, but this will be small due to the small spectral 
weight there. 

We will from now on treat J/(hcod) as a small parameter. It is then 
useful to write 

Fj j ,=  I + (Fi ;~-  I ) (3.3) 

and to expand the product I-[ Fj/ in (2.19) in powers of ( F j ; -  I). This is 
analogous to the technique used in the low-density expansion of 
thermodynamic quantities for a hard-core interacting gas. There, the 
expansion is in terms of e-V/kB T 1 instead of the potential V. Here, we 
may say that we are dealing with a "low density" (in time) of scattering 
events. 

Regarding the expression (2.19) as a propagator.G(z s, Zo, t), then it is 
equal to Go(zf, Zo, t) dressed with zero, one, two ..... factors of the retarded 
self-interactions (Fj j , -  1) in all possible ways. Diagrammatically this is 
shown in Fig. 1, where a heavy directed line represents the dressed 

o 

t < o +  ~ < I  j ,: ~ti,,:o 

+ < t < f < '~ < 

f \ 
+ < f ' < , , ( ) ~ .  < 

+ < ( . L , < ,  < 

/ \ 

4= ( / < ~ < ~ ( i < 
% / 

+ < t<,-<-,<~ ( 

Fig. 1. Diagrams for the propagator in the time domain. 

822/65/1-2-22 
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propagator G, a light directed line the "free" propagator Go, and the 
dashed lines the self-interactions (Fjj,- 1). Two self-interactions can share 
at most one hopping time. The detailed structures of these diagrams will be 
made clear below. 

Consider first the term with a single self-interaction, 

Gl(zf, Zo, t)= dtn dt, 1"'" dtl 
gt=O {Zj} 

x (zsl ~ Iz, l>(z, ,I ~h Iz~_=)... (Zll :~/'h Izo) 

xexp{)o(zo)tl+ ~ 2(zj)(tj+l--tj) } ~ (F j j , - I )  
j = l  n>~j>j'>~l 

(3.4) 

The structure of this expression is more transparent if we make a Laplace 
transform of it. The result is 

Gl(Zf, Zo, J.) 

= f  de) 
oo n=2 j = 2  j ' = l  {zo, } 

{ 1 
• ,~_)4zs)(zsl~hlz, 1>,~_,~(z._1) 

x 2_2(zj_l)+ico(Zj l l2h]zj  2 )2_2(Z j_z )+ ie  ) 

1 } 
-.-(z;+ll ~h Izj,> ~-,~(z/)+i~o 

1 (Zj, 11 (~h ]Zj, 2> 1 
X ~--~(Zj,  1) ~--~(Zj,  2) 

1 
---(z~l ~ Izo) ,~- ~(Zo)} 

x {<zjl ~ h  Izj 1>/t~( (D, zj, z[-1,  zj,, Zj, l)<Zj, ] ~h Izj,_,)} 

,} (zj+ 11 ~ Izj> 2 --~(zj) 

(3.5) 

where P is defined by 

f~ doge_iO,~(oo, zj, zj_l,z;,zj,_l) 
--oo 

=F('c, zj, zj 1,z;,z; 1 ) - i  (3.6) 
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with F(.. .)  given in (2.21). We now change the labels such that z4= zj, 
z 3 =zj_~,  z 2 =zj , ,  and z~=zy_~.  After summing up the intermediate 
positions other than these z's, the expression (3.5) becomes 

cl(zr, z0, ;~) = f d~ Y~ Z 
oo n=2 j ~ 2  j ' = l  {z i} 

{ ( , ; , 1 }  
x <z31 2 - 5 # , + i e )  2t'2-5~163 Iz=> 

X {<Z4I ~ [Z 3 ) ff '(O),- 74, Z 3, Z 2, Z I ) ( z  21 t ~  h [Z1)}  (3.7) 

Now, the powers n - j ,  j - j ' - 1 ,  and j ' - 1  are ranged from 0 to 
independent of one another, and the summation over them gives 

f 
oo 1 

Gi(zy, Zo, 2 ) =  doJ ~ (zj, t _ I z4 ) 
-oo (zJ} 2 - ~ - 2'h 

1 1 
x (z31 Iz2){zl I 

• (z4l 5~h [z 3 ) F(CO, Z 4, Z 3, Z 2, Z1 ) (Z  21 & I z l >  

]z0) 

(3.8) 

Notice that the quantity 

1 
(zl _ I z ' >  - Go(Z ,  z ' ,  2 )  (3.9) 

2 -  ~e,- Seh 

appearing in (3.8) is just the Laplace transform of Go(z, z', t) defined 
in (3.1). 

As a result of the above analysis, the first-order diagram in Fig. 1, after 
Laplace transformation, has the detailed structure shown in Fig. 2. A 

G) 

f / I "~.~'~ ~, 
/ " X+iw \ \ X< . / j  x.x_ X 

BZf Z4i 3 < Z2 Z ' I( Z~ 

Fig. 2. The first-order diagram for the propagator. 
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directed line still represents a free propagator Go, with its position variables 
labeled at the ends of the line, and its Laplace variable labeled beside the 
line. The hatched circle with four legs represents the self-interaction ~', with 
its position variables labeled at the ends of the legs, and its frequency 
labeled beside the circle. Finally, the undirected short lines between 
pairs of dots are the hops, (z4I 5~h Iz 3) and <z2I ~ IzX). The "value" 
G~(z s, Zo, 2) of the diagram is equal to the product of the quantities 
associated with the parts of the diagram, with the internal positions 
summed up and the frequency integrated out. 

Similarly, the second-order diagrams in Fig. 1 can be Shown to have 
the detailed structures displayed in Fig. 3. The meanings of the various 
parts of these diagrams are the same as for the first-order one. Once the 
first- and second-order diagrams are understood, it is not difficult to 
imagine how the higher-order ones should look. In an rnth-order diagram, 
the otherwise free propagation of the particle is interrupted by rn self-inter- 
actions between m pairs of hopping steps. Two self-interactions can share 
at most one hopping step, but one hopping step can be shared by any 

(xJ 0A I 

X X+h~ ~ X+iw '  X 

co 

X+iw'  
\ 

_- ( 1 / 

X X+iw \ \ / I X 
\ / 

1 - , ~  . -_ 

W I 

X+i(~u+w')x w 

OJ I 

C,d 

_ x  z . , "  . . . .  \x..x+,~_ x 

i " "  - - " I A ~ - ' ~  X+ i (w+w' )  
A tCi.I r 7 C I 2  OJ 

- ~ - x-+,"~X.'2~Zx;i~o- x 
~ J  

Fig. 3. The second-order diagrams for the propagator. 
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number of self-interactions. Each allowed topologically distinct diagram 
contributes a term for G. 

The propagator G satisfies the Dyson equation (in operator notation), 

G(2) = Go(X) + Go().) X(2) G(2) (3.10) 

where the self-energy 

<zl -r(;0 iz'> - _r(z, z', ;.) (3.11) 

is given by the diagrams shown in Fig. 4. These diagrams start and end 
with hops and each of them cannot be disconnected by removing one Go 
line. The first-order diagram has the value 

(~ZI ~ ' 1 ( ; ) I  Z' ) = do) E _F(o.), z, Z l ,  Zil, z/') 
-- oo Zl zl 

x <zl c2h Izl > Go(zl, z'l, 2 + io~)<z'l[ ~ ,  lz'> (3.12) 

as can also be read off from (3.8). 

W 

I I  \ \  

X+iw 

w 

/ 2 @ Z  -. 

- -  x + , ~  " 0 " - -  "i"/ ,.. : -@:  I 
r Oi I 

~ ~ ~ Z " O _ ~  L--~... . .<-- x +  i (~  + ~ ' )  

- - X+i'w ~ x . .  - . . f /  \....~ i 
X + i ( w + ~ ' ) . ,  w 

~ i f i  7 X + i w  

co' w _ _ X + I ( w + w  ~) 
.,im..mez, z S (  . 

. / . , . < _ _  ,/ - - . L x , . x + , ~ .  
- - x + ~ " . ~  " - -~'- ' .~/"  

). ,+ioJ \ '~-~ ~ /  / X+iw 

fjji 

Fig. 4. The self-energy diagrams, 
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3.2. The A p p r o x i m a t i o n  

The interaction kernel F(co, z, z l ,z ' l ,z ' )  in (3.12) has a typical 
frequency scale of'co a. The integration over co should make the propagator 
Go(z1, z], 2 + ie)) to be of order 1/coa. (The interaction kernel itself has the 
dimension of 1/co.) The two hopping factors in (3.12) then make Z1 to be 
of order of (3/h)2/coa. 

From Fig. 4 we see that the second-order terms for the self-energy 
involve at least three "hops" and two self-interactions. Quite similar 
arguments as given above then lead to the conclusion that they are 3/(ho~a) 
times smaller than the first-order term. The higher-order terms are even 
smaller. 

We then make the approximation 

Z'(z, z', 4 )~  Zl(z, z', 2) (3.13) 

With this approximation, we can write 

1 
6(2) = (3.14) 

4 - 2 p - & ( 4 )  

The Laplace transform of the probability P(xf, Xo, t) is then given by 

P(xf , Xo, 4)= <zf lG(4) Iz0> 

1 
= <zsl Iz0> (3.15) 

4 - -  o(~p - -  ~71(4  ) 

where zf and z0 are in diagonal form. Thus, the problem becomes solving 
for X~(4), finding the inverse of 4 - ~ p - X l ( 4  ), and inverting the Laplace 
transform. 

The expresions (3.12) and (3.15) are the central result of this section. 
The operator inversion is facilitated by studying the eigenvalue problem, 

410> = [2p + &()J110> 

This is analogous to the generalized Boltzmann equations in the 
literature. (23-z5) The problem is further simplified by restricting to small 
value of 4, if we are interested only in the long-time behavior of the 
particle. 

The rest of this subsection gives details of the expression (3.12). The 
reader may wish to skip this part, and come back later when the formulas 
are referred to. 

It will be useful to write (3.12) in a more detailed form. It is easy to 
see that (3.12) is the Laplace transform of the following expression: 
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<zl s l ( t )  f z ' > :  ~ I-F(t, z, zl, z'~, z ' ) -  13 
zl,zl 

• <zl ~'~/, Izl><Zl[ e ~ [Z'l><Z'ti ~ [z'> (3.16) 

From (2.20) we have 

~ {6X, Xl+,6y, yx<x-l, Yl -  6X, XlG~y, yl-- I<X, Y "~-ll} <zl IZl><Zll 

3 
{6xi.~, +r6yi,r, Ix' + l', y'> (3.17) Izi><z~l 2h Iz'> = ~  

- -6xl ,x ,6y[ ,y ,_ / ,  ]X', y ' -  1'>} 

Substituting this into (3.16) and using the definition (2.21) for 
F(r, z, zl, z], z'), we have 

<zl s , ( r ) Iz '>  

= (2/h)2 y~ {- <x - t, yl e 2p~ Ix' + r ,  y'> F.,(r + i@/2, x - x' - t / 2 -  r /2)  
I , l '  

- (x, y + tl e -~p~ [x', y' - l' > F t l , ( ' c  - -  i h f l / 2 ,  y - y '  + l / 2  + 1 ' / 2 )  

+ < x - l ,  yl e ~p~ Ix', y ' -  l'> F. , (~ - ih~ /2 ,  x - y ' - t / 2 + r / 2 )  

+ <x, y+t l  e 2p~ I x ' + r ,  y'> F. , ( r+ i@/2 ,  y - x ' + t / 2 - r / 2 ) }  (3.18) 

where 

~ J(k) sin(kl/2) sin(kl'/2) ) 
F u , ( ~ ,  x)=exp - 4  sinh(/3hwk/2 ) c o s ( w k  r ) e  skx - 1 

k 

The Laplace transform of (3.18) then gives 

(3.19) 

<zl s,(,~)Iz'> 

= 2 ~Fu ' (w ,k )  - ( x - l , y [  
LI '  m,k 

e - - f l h w / 2 e i k ( y  y ' + l / 2 + t ' / 2 )  

- <x, y + t l  

+ <x--I, y[ 

e flhw/2 e i k( x - x" - ~/2 - 172) 

2 + i e g -  2 p  

Ix', y ' - l ' >  
2 + i~o- 2p 

e - f lhW/2c ik (x  -- y '  -- I/2 + 1'/2) 

Ix', y ' - / ' >  
2 + i w -  ~ e  

e f l h o g / 2 e i k ( y  x' + 1/2--  1'/2) ) 

)[ + ico-- '2p Ix '+l ' ,  y'> 

Ix '+l ' ,  y'> 

+ <x, y + tl (3.20) 
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where Pw(o), k) is the Fourier transform of Fw(z, x) given by 

Fu,(co, k) e x p ( -  icoz) exp(ikx) 
o9, k 

--exp[ -4 sin k/ 2  1 
k sinh(flhc%/2) cos(o)kr ) exp(ikx) - 1 (3.21) 

At temperatures low compared with the Debye temperature, the exponent 
in the above exponential is small. To first order in the exponent, we have 

Fu,((o, k) = --2(6o,,OOk 
J ( k )  s i n ( k / / 2 ) s i n ( k l ' / 2 )  

+ 3 . . . .  k) sinh(flhoo~j2) (3.22) 

It is not difficult to see that we can obtain the same result from (3.16) 
if we replace F(z, z, zl, z], z') - 1 by 

-- ~ J(k){coth(flhCOk/2) COS(~Okz)(U-- U1)(U;* -- U '*)  
k 

- i s in(a)kz)(U- U, ) (V ;*  - V'*)} 

which is the argument of the exponential in the definition (2.21). 

(3.23) 

4. T W O - L E V E L  SYSTEM 

In this section, we consider the case that the particle is restricted to 
only two sites, which are located, for instance, at x = l j 2  and x = -!1/2.  
Our system then becomes a two-level system coupled to a heat bath of 
phonons. The analysis will be done in three subsections: (1) general 
considerations, (2) the case of low temperature, but arbitrary bias, and (3) 
the case of zero bias, but arbitrary temperature. 

4.1. General Considerat ions 

We can parametrize the position of the particle as x = x l l / 2  and 
y = y l , /2  with x, y = _+1. Then we can write 

U ~__ c i kx  _ c i k y  

= i ( x -  y)  sin(kll/2 ) (4.1) 

and 

V - ~  c i kx  ~- c iky 

= 2 cos(kll/2) + i(x + y)  sin(kll/2) 
(4.2) 
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The influence factor in (2.21) is then simplified as 

Fj/=-F(tj - tj,, zj, Zj_l, zj,, Zj, I) 

=exp - ~-2J(co) coth cosco(tj-tj,)(~j-r 

- i sin co(tj-  tj,)(~ i - ~j-I )(r/j,- r / j ,  1)]} (4.3) 

where ~ = x - y, r/= x + y, and 

j(co) = (.o2 ~ J(k)  s i n 2 ( k l j 2 )  3(co - cok) 
k 

= (1/Nh 2) ~ I g(k)l  2 sin2(klj/2) 6(o) - O k )  
k 

The renormalization relation (2.20) becomes 

J-- A exp [ - 2  fo  ~ J(co)coth (fl--h2-)l 

(4.4) 

(4.5) 

The spectral density J(co), with a dimension of frequency, contains all 
the information of the phonons relevant to the dynamics of the two-level 
system. (19) It vanishes beyond a frequency around cod. At the low-frequency 
side, it vanishes as a power of co. For short-ranged repulsive interaction 
between the particle and the lattice atoms, Ig(k)l 2 goes to zero linearly 
with cok, so J(co) vanishes like (o5 at low frequency. For a piezoelectric 
coupling J(co) vanishes like (o3. In ref. 19, the general case of J(co)~ co" has 
been studied for the low-temperature dynamics of a two-level system. Our 
case lies well in the regime of super-Ohmic coupling (s > 1), where the low 
spectral density at small co makes the coupling effectively weak at low 
temperatures. However, the low-frequency behavior of J(co) will not be so 
important for higher temperatures. 

It will be convenient to introduce the Pauli matrices {0.,, # = 1, 2, 3 }, 
defined as 

al Ix, y )  = Ix, y )  

0.2 Ix, y)  = ix ]s y)  (4.6) 

0" 3 IX,  y)  =x Ix, y)  
t Similarly, we define 0.,, which acts on the y variable, but is otherwise the 

same as 0.,. The probability (3.15) can then be written as (see Appendix D) 
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P ( x f ,  Xo, 2) 

1 
= ( x f ,  xf] e i0(~176 e i~ IXo, Xo) (4.7) 

2 + i(0.3 -- #3)~2/h - ~,~(2) 

where f2 = (32+ e2)1/2 and 0 = (1/2) t an -  1(3/e). The self-energy operator in 
the above expression is given by 

21(2) = - de) [C(co)A1 + S(co)A2] (4.8) -of) 

where 

f ~ dt  i09t C(o9)= ~ ~ e  { c o s h [ g ( t ) ] -  1} 

f ~ dt  io~t S(~o)= _~ ~ e  sinh[g(t)]  

f ?  dco j(o~) , ~, 
g ( t )  = 4 co 2 sinh(--~co/2) c~176 

(4.9) 

and the A's are given by 

J , e -flhco/2 j , 

J 0. e -/~ho~/2 
--(-~0.1"4--~ 3)~_t_i03_t_i(0.3__Gr3)~-~/h(-'~0.tl'JV~0.r3 ) 

2 , 3 __ ( ~  0.tl _]_ ~ 0.3) eflh~ 

eBhCo/2 
A2= 0.30.~ ,~q_ioo+i(0 .3__a,3)Q/h0.10 .3  

e - 13h~o/2 l t t t 
+ 0.30.1 2 + ico + i(0.3 - -a '3)g2/h  0.* 0.3 

e -- flhm/2 t ! 
+ a30.1 ~ + ico + i(0. 3 --  a '3)f2/h ~176 

eflti~ } 
+ a'3al 2 + ico + i ( 0 . 3  - -  a'3)f2/h 0 " 1 6 3  

(4.10) 
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For the special case of xy= -1 ,  Xo = +1, we have 

1 
P ( - ,  + , 2 ) = ( 0 - - I  

,~ + i(o~ - ~;) f2/h - 21(,l) 
where 

10+§ (4.11) 

1 0 + + ) = ~  1 +  5 [ + + ) +  1 -  I -  )-51+-)-51 + )  
(4.12) 

Ir ) = 7  1 -  I + + ) +  1 + ~  I-->+~1+->§ 

4.2. Low-Temperature and Arbitrary Bias 

When the temperature is low compared with the Debye temperature, 
the function g(t) in (4.9) will be small due to the high-frequency cutoff by 
sinh(/~he)/2) and the low spectral weight of J(e)) at low frequencies. We can 
therefore set C( t )=  0 and S ( t ) = g ( t )  to leading order in kBT/(he)a). The 
expression (4.8) then becomes 

where J(e)) - - J ( - c ~ )  for co < O. 

f ~ de) 2J(e)) 
-o~ e)2 sinh(/~he)/2) A2 (4.13) 

with 
equal to 

2 + a(2) - b ( 2 )  ] 
-a(;O ~+ b(~)/ 

in the subspace of {[ + + ), [ - ) }, and it is equal to 

( 2 + i 2 s  c(2) ) 
c(2) ;t - i2g2/h + c()O 

in the subspace of {1+ ), I -+  )}, where 

Now, both 21(2) and i (~3-  a'3)f2/h are block diagonal in the sectors 
a 3 ~ =  _+1. Written in matrix form, 2 + i ( a 3 - a ' 3 ) ~ 2 / h - Y , l ( 2 )  is 

f 
~ de) 2J(e)) 22e - ~h'~ 
_ ~ e)2 sinh(flhe)/2) 22 + (e) + 2f2/h) 2 

f 
oo de) 2J(e)) 22e ~~ 

oo e)z sinh(phco/2) 22 + (co + 2f2/h) 2 

f o~ de) 2J(e)) 22e ~o/2 

-- oo CO 2 sinh(/~he)/2) 2 2 § (.0 2 

(4.14) 

(4.15) 

(4.16) 
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The matrices (4.14) and (4.15) can be easily inverted to give an explicit 
expression for P ( - ,  +, 2) in (4.11) as 

1 (e/f2)[b(,~) - a(2)] + (e/f2)22 1 )~(Z~/~"~) 2 

P ( - ,  +, 2) = 2--2 - 22[2 + a(2) + b(2)] 

This expression has four poles located at 

2 2 2 + 22c(2) + 4Q2/h 2 

(4.17) 

2 = 0  

2= - [ a ( 2 ) - b ( 2 ) ]  ~ - [a(O+)+b(O+)]  

2 ~ i2f2/h - c(O+ + i2f2/h) 

2 ~ -i2(2/h - c(O+ - i2f2/h) 

(4.18) 

respectively. With their residues approximated to first order in (zl/h) 2, we 
have 

P ( - ,  +, 2) = ~2 [1 + ~ tanh(flf2) ] 

(e/Q) tanh(flg2) + (e/f2) 2 
2(2 + 2V) 

2 (2 + F) 2 + (2(2'/h) 2 (4.19) 

where 

F =  ~ ( ~ )  2 j ( 2---~ ) coth(fl~2 ) 

[ (~)2  I~  de)8J(c0)coth(flhco/2)7 
f2' = f2 1 + co----- ~ (2Q/h) 2 _ ~ 2 j 

(4.20) 

Recall that f2 is the eigenvalue of the renormalized particle Hamiltonian 
Hp; now f2 is further renormalized to (2' by the residual interaction with 
the phonons. After transforming back to the time domain, we finally have 

'E + 1 P ( - , + , t ) = ~  l+~tanh(flg?)  

-1-[ -~ tanh( f l f2 )+(-~)2]  

2 
(4.21) 
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This agrees with the results of Leggett et al. (19) in the limits of zero bias 
(e = 0) and large bias (e >> A), and it fills out the intermediate region where 
the noninteracting-blips approximation used by these authors is invalid. 
The above result has also been obtained by Gorlich et al. ~2~ using a path 
integral method beyond the noninteracting-blips approximation. 

The solusion for the full density matrix has a particularly simple form 
in the new representation where /Tp=e~r 3 + ffal is diagonalized. Specifi- 
cally, the diagonal elements are given by 

p(+ ,  + ; t ) + p ( - , - ; t ) =  1 

p( +,  + ; t) - p( - ,  - ;  t) = - tanh(fis 

+ e-er ' [p(  +,  +;  0) - p( - ,  - ;  0) + tanh(fiQ)] 

The off-diagonal parts are given by 

p( +,  - ;  t) = e - r ' e  i2ot/hp( + ,  _ ; O) 

p ( - ,  + ; t) = e r ' e i m t / h p ( - ,  + ; O) 

The results in (4.21) may be obtained by transforming the density matrix 
back to the original representation where a3 is diagonalized. 

The above simple result may be interpreted as follows. At low enough 
temperatures, our system is effectively described by the renormalized par- 
ticle Hamiltonian He, which is weakly perturbed by the residual interac- 
tion with the phonons. 17~ In the representation where Hp is diagonalized, 
the diagonal parts of the particle density matrix relax exponentially at a 
rate of 2F to the equilibrium distribution exp ( -  fiHe)/tr e x p ( -  f i r e ) ,  while 
the off-diagonal parts oscillate with a frequency 20 ' / h  ~ 2(2/h and damp to 
zero at a rate of F, the inverse lifetime of the eigenstates of Re.  The result 
suggests that the Bloch ewaation formulation is suitable as is advocated in 
ref. 19. In the new representation, the z component of the spin relaxes to its 
equilibrium value exponentially with a rate of 2F, while the x - y  component 
rotates about the z axis with a frequency of 2(2/h and damps with a rate 
of F. The Bloch equation may look slilghtly complicated after transforming 
back to the original representation. (The Bloch equations as given in ref. 20 
are incorrect for the biased case. We expect that all three components 
should have oscillatory terms.) 

4.3. Zero Bias and Arbitrary Temperature 

When the potential bias e is zero, 2+  i (63- -6 '3 )Q/h- -~ '1 (2)  is again 
block diagonal in the sectors with a3a; = +1. In matrix form, it is equal to 
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2 +  a(2) -b(2) 
- a ( 2 )  2+b(2)] (4.22) 

in the subspace of {t+ + ), 1- ) }, and it is equal to 

;.+ + d(;.+)+ e(2) c(2) 
(4.23) 

c(X) ,~_ + d(,~ ) + c(,~)] 

in the subspace of { ]+_) ,  ] +)} ,  where 2+ =2++_i2A/h, and 

/3" 2 f oo 22e-~h~/2 
a ( 2 ) = / - ~ )  ~ de) S(co)22 + (co + 2f2/h) 2 

b(2) = f-oo do) S(co) f f  + (co + 2f2/h) 2 

c(2) = de) S(~o) 22 + r176 2 
- - a o  

(4.24) 

3 )  ~ ~, , 4 cosh(flhco/2) 

With the above matrices inverted and substituted into (4.11), we have 

P( - ,  +,~) 

1 1 2+�89 )] 

=2-2 2 1 2 + + d ( 2 + ) ] [ 2  +d(2_)]+2c(2)[2+�89 
(4.25) 

Using 
explicitly as 

c(2) = 2 dt e x, sinh(R(t)) cos(I(t)) 

d(2) = 4 dt e-~'[cosh(R(t)) cos(I(t)) - 1] 

the definitions of S(co) and C(co), we can rewrite c(2) and d(2) 

(4.26) 

where 

R(t) = 4 ~-2 J(e)) coth cos(~ot) 

I(t)=4 fo ~O2 J(o))sin(cot) 

(4.27) 
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The expression (4.25) is valid for any temperature. In the last sub- 
section, we considered the case of low temperature, where we found an 
underdamped oscillation for P ( - ,  + ,  t), indicating a coherent motion of 
the particle. Here we explore the possibility of a transition to incoherent 
motion as the temperature is raised. 

We first give an estimate of the poles in the second term of the expres- 
sion (4.25). So long as 2 and 2+ are small compared with coa, the frequency 
scale of R(t) and I(t), we may replace them by zero in c(2) and d(2+). We 
then find that 

2=-[d(0)+c(0)]+{[c(0)]2-4(~)2} 1/2 (4.28) 

It is seen that the poles become real when C(0)2 ~ 4(z]'/h) 2, or when 

fo dtsinh(R(t))cos(I(t))~ 1 (4.29) 

which can be satisfied only when the temperature is high enough. The 
transition temperature may be estimated by a steepest descent evaluation 
of the time integral, 

fodt sinh(R(t)) cos(l(/)) 

~-8 fo do) sinh(~h~o/2)] exp 0 2 s inh( - -~ /2 i ]  (4.30) 

The left-hand side of the inequality (4.29) then becomes 

8 h sinh(flhco/2)/ 

x exp 2 ~-~ J(o)) sinh(/~h~0/2) coth 

1A (2k, T (~ J(e)) exp J(~o) (4.31) 

where in the last step we have made a high-temperature expansion. This 
result can also be obtained from the condition that the lifetime of bonding 
or antibondinig state be shorter than h/2A, a time scale associated with the 
level spacing 221. 
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Right at the transition temperature, the two poles merge together at 

2 = - [d(O) + c(0)] 

"~ - 4  h k-BT\-Too / e-r~ (4.32) 

where 

To = - -  J(co) (4.33) 
B (.O 

and we have used again the steepest descent method and high-temperature 
expansion. It is seen that the pole is of order A/h or smaller, which is much 
smaller than eo a, justifying the replacements of 2 and 2+ by zero in c(2) 
and d(2 + ), respectively. 

When the inequality (4.29) is well satisfied, we can write (4.25) as 

1 1 ,~ + d(O) 
P ( - ,  + ,  

2s--2~ 2 [~+d(O)][2+d(O)+2c(O)] 

1 1 
- 2 2  2 ( 2 + F )  (4.34) 

and therefore 

where 

P ( - ,  + , t ) = � 8 9  rt (4.35) 

F = d(0) + 2c(0) 

= 4 dt [exp(R(t)) cos(I(t)) - 1] 

,~ -~kBT\~oo j e -r~ (4.36) 

The initial transition rate is F/2 according to (4.35), and its value agrees 
with the result obtained from the Fermi golden rule by Holstein. ~ 

4. STRONG SITE ENERGY DISORDER AND 
M A R K O V I A N  MOTION 

In this section we consider a general multisite case with site energy 
fluctuations ~ie large compared with the renormalized hopping energy A. 
For  the two-site case studied in the last section, we found an exponential 
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time dependence in P ( - ,  + ,  t), suggesting a Markovian description of the 
particle motion. This motivates us to derive a master equation for the 
particle motion for the general multisite case here. 

We consider first the self-energy operator given in (3.12). We will 
restrict our attention to low temperatures (k B T ~  he)a) to simplify calcula- 
tions. According to the arguments given at the end of Section 3, we may 
make the approximation 

F(v, z, Zl, Z'I, Z ' ) -  1 

,,~ _ ~ sinh(flhe)k/2J(k) ) {COS e)k ( . ihfl'~ (eikx_eikxl)(e ---2-) 

+COSe) k " C - -  (eikr--eikrt)(e-ikyi--e -iky') 

_cose)k(.c i~_)(eikx eikxt)(e-ikri_e iky') 

_cose)k(z+i_~_)(eikyeiky,)(e-ikxi_e ikx')} (5.1) 

Substituting this into (3.16), we have (in operator notation) 

V.l(,.C)=~k sinh(flhe)k/2)J(k) (cos6ok(T +i_~_) [X, C~p]e2e~:[ C~p, 

-[- COS ('Ok 

x*] 

_ c o s  Ok 

[ ih[3\ X,]t -cos e),, ~.~ + T )  EY, 2.1 e~"~e2., (5.2) 

where [ . , . ]  denotes a commutator, and X and Y are operators 
corresponding to e ikx and e iky, respectively. 

Suppose Im) is an eigenstate of He  with energy era, then an eigenstate 
of 2 p  may be written as Im, n) with eigenvalue (em--en)/(ih). The 
"diagonal" states { In, n )}  are special: they share the same eigenvalue 0 of 
~p,  and are separated from others by a frequency scale of 6s/h. Under the 
condition 6e >> A, they are effectively not mixed with the others by S1(2). 
The inverse in (3.15) may therefore be carried out within the subspace of 
the diagonal states. 

822/65/l-2-23 
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The matrix element of Sl (z )  between two diagonal states is given by 

(n, n] Sl (z)  In', n'> 

- J ( k )  
Z~k h 2 sinh(flhCOk/2 ) 

• cosc~ k r +  ,~,,,,,~l<nlXIna>la(e,,,-~,,)2e(~/'h)(~"~ -~~ 
nl 

+ c o s %  ~ -  Onn'~l<n21 Yln>12(en-e,,a)Re (~/eh)(~"-~"2) 
n2 

-coso~ k v -  <nl Xln'><n'l Y* In>(en,-e~)2 e (~/ih)(~"'-`") 

-coscnk v+-ff - )  <n'l YFn>(nl X*  In'>(e,,-e,,,)2 e (~/ihl(~"-~') 

(5.3) 
where, with the definition <xln > -  r we have 

<n] X In'> = ~ ~* (x )  eikx6.,(X) 
x (5.4) 

<nl Y In'> = ~ ~O*(y) eikylpn,(y) 
Y 

We then Laplace transform (5.3) and set 2 = 0 + ,  yielding 

<n, nl $1(2 =0+)In ' ,  n'> 

=~k ~J(k)o~ { 
sinh(flhO)k/2 ) I(n[ Xln'>12e ~(~"' en)/2 

x [& (co k ~'-~"' 

- 6 ~ ,  ~ I<nl Xlnl>12e p(~~176 
nl 

The density matrix then satisfies the master equation 

& 
-~ p(n, n, t) = ~ W~,[e ~(~'- ~')/2p(n', n', t) - e ~(~~ -~"')/2p(n, n, t)] (5.6) 

n'  
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where p(n, n, t )=  (n, nip(t)), and 

Wnn'= ~ sinh(flhcok/2) I(nl e i kx  In')12 b ('Ok ~ (5.7) 

The master equation involves only the probabilities on the eigenstates of 
He, indicating the incoherence of the particle motion. 

We have the following physical picture. The major effect of the 
phonon field is to renormalize the hopping energy. As a first approxima- 
tion, the scattering of the particle by the phonons may be ignored at 
temperatures low compared with the Debye temperature. The eigenstates of 
the particle are extremely localized at various sites, because we are in the 
limit of 3 4  6e. In fact, the wave function falls off exponentially as (3/6e) t, 
where l is the distance (in units of lattice constant) from the localization 
center. When we take the scattering effect into account, the particle gets 
knocked from one localized state to another in an incoherent way as 
described by the master equation (5.6). 

At temperatures even lower than 6~, the Boltzmann factors will limit 
the hopping rates considerably. The Mott variable range hopping ~32) 
scenario then emergies as a result of the competition between the following 
two factors: (1) the overlapping integral, which falls off exponentially with 
the distance between the centers of the initial and final states, and (2) the 
Boltzmann factor, which favors longer-range hopping because small energy 
differences is more likely to be found between states of large seperation. 

In the following we will limit our attention to the intermediate case, 
be~kBT~hco d. The Boltzmann factors are unity, and the dominant 
hopping steps are the nearest ones. The overlapping factor ](n[ e ikx In')[ 2 
can be calculated perturbatively as 

3 (e ik l -  1) 2 
~n - -  ~ n '  

where i is the vector between the sites at which the two states are localized. 
The master equation (5.6) describes a random walk in a random environ- 
ment/33~ Various techniques have been developed for the evaluation of the 
diffusion constant. If the hopping probabilities do not vary too much, we 
can ignore the percolation effect. ~ The diffusion constant may be 
estimated by 

D = WI 2 (5.8) 

where l is the lattice constant, and W the typical value of the quantity in 
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(5.7) for a pair of states localized at nearest neighboring sites. We then 
have 

~/Vnn, 

7~ ( ~ ) 2  1 ~k Ig(k)12[eikl--ll2 ( 'gn~ En'') 
= h-- 5 ~ sinh(/~h~ok/2) f (-O k 

i _ ol k J (k)12 l12f (5.91 

The diffusion constant thus depends quadratically on the renormalized 
tunneling energy splitting 3, linearly on temperature, and quadratically on 
the particle-phonon coupling energy g(k). The dependence on the strength 
of disorder f8 differs for different types of couplings. For short-ranged 
interaction we have [g(k)[ 2 k2/(J)k [see the remarks on (2.3)]; therefore 
D ~ ( f E )  2 for 3D phonons, and D ~  (fiE) for 2D phonons. The diffusion 
constant increases with disorder! A more surprising thing occurs for a 
piezoelectric coupling, for which Ig(k)12~l/cok; therefore W,,, is inde- 
pendent of e, - e,,, for 3D phonons. The diffusion constant is independent 
of disorder! These results may be understood by noticing that the phonon 
spectral density increases with frequency, and that the frequency sampled 
is equal to re. 

6. LATTICE W I T H  C O N S T A N T  SITE ENERGIES 

6.1. General  Considerat ion 

In the case of translational invariance, it will be convenient to work in 
the momentum space. Introducing the momentum eigenstates, 

1 [p, q )  = ~ -  ~ e ipXe-iqy iX, y )  (6.1) 
~v s x ,  y 

where N~ is the total number of sites, then the probability (3.15) may be 
written as 

P(xf, x o, 2) 

1 

Ns p , q , p ,  q, 

eiE(r (p+,l),,/3(p, q] [p', q ' )  (6.2) 
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We now make a variable change (p, q)--* (u, v), where u = p + q  and 
v = ( p -  q)/2; then both foe and $1(2) are diagonal in u (see below), and 
we may write 

1 
P(xf ,  Xo, ) ~ ) = ~ - ~  P(u, 2)e i"('~ xj) 

~,s i1 
(6.3) 

1 
1 v~v (Vl /~--foP(U)--'~"V'I(U, ~) I vy ) P(u, , ,  

We will be interested in the hydrodynamic modes corresponding to 
poles of P(u, 2) at small 2 and small u. As we will show later, there is a pole 
2(u) that approaches zero as 

2(u) = - D u  2 (6.4) 

for small u. The coefficient D is the diffusion constant. 
We first derive the operator S~(u, 4). From (3.20) and the definition 

(6.1), we have 

(p, q[ ~'~(2)= ,,,'2 ~o, k2 -Fu'( c~ k) {2 ~/~i~ ~ 8 - - ~ - h _  (p'  ql 

e - flho)/2 e i(q - k/2 )(1 + l ')  

(P, ql 2 + ico + i(/;p -- ~q _k)/h 
e ~ t i c ~  k / 2 ) l + i ( q + k / 2 ) l '  

-~ 2+ico+i(ep k--eq)/h ( p - k ,  q + k t  

e f l h c O / 2 e - i ( p + k / 2 ) l ' + i ( q  k/2)l } 

-~ A+ico+i(ep-eq  k)/h ( P + k ' q - k l  (6.5) 

where % is the band energy function of ~ .  It is seen that u = p + q is 
conserved under X1(2). Within the sector of a given u, we write 
(P, ql = (vl, and define foe(u) by (v] fop(u)= (p, ql fop; therefore 

1 
(vJ f~  (vt ~ (ev + ./z -- e, ./2) (6.6) 

where we have used the fact that ep = e_p. Similarly, we define ~'I(U, 2) by 
(vl Xl(u, 2) = (p, ql X1(2). We therefore have 

(vl Z~(u, 2 ) =  ~ ~ ~ Fu,(c~, k)e i(v+k/2).+r) 
1,1' o~,k 

x [--fle-B~~ +fzel~h~ 6.7) 
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where the f ' s  are defined as 

e - iu(i  + l ' ) /2  

L= 
2 - -  ice + i(gv+k+u/2 - -  e v u / 2 ) / •  

e i U ( I  + 1")/2 

+ 
2 + ice - -  i (e ,  + k - . / 2  - -  e~ + u/2)/h 

e - i " ~ t - r ) / 2  (6.8) 

A -  
2 - -  ice + i(e v + k + u / 2  - -  e, u/z)/h 

d i u ( l  l ' ) /2  
+ 

2 + ice - i(~ v + k- ./2 -- ev + , / 2 ) /h  

and we have used the fact that Fu'(ce, k) is invariant under the change of 
sign in k and ce. In the limit of u = 0 and 2 = 0, we have 

(Vl Sl(O,O)=2rc ~ ~ ?,t'(ce, k) e i ( ' + k / 2 ) ( t + " ) 3 ( c e - - ( e , + k - - e v ) / h  ) 
1,1' co, k 

• [ - e  ah~ I + eP~/2(v + kl ] (6.9) 

6.2. L o w  T e m p e r a t u r e  

According to (6.3), the poles of P(u, 2) are given by the eigenmodes of 
the equation 

2 I O ) =  2 e ( u ) I O ) + Z l ( u ,  2)]~9) (6.10) 

We are interested in solutions with small 2 and u. We can set ~-~I(U, fi~)~- 
Z'l(0, 0), if its 2 derivative is small compared with unity, and if its u 
derivative is small compared with the typical band velocity [the u 
derivative of ~p(u), to be precise]. When the temperature is not high 
compared with the Debye temperature, these conditions are satisfied. 
Equation (6.10) can then be written in the form of a Boltzmann equation 

~gv 
= + w..[e e 

u 
(6.11) 

where 0e, stands for derivative Of e, with respect to v, and W,,, = W,,, is 
given by 

Wvv, = 2r~ ~ ? , , ( c e ,  v ' - v ) e - i r  (6.12) 
1,1' co 
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The left-hand side of (6.11) corresponds to the time derivative term. The 
first term on the right-hand side of the equation corresponds to a drifting 
term, while the second term corresponds to the collision term. The rate of 
"scattering in" is Wvv, exp[/~(ev,-av)/2] and the rate of "scattering out" is 
Wvr exp[/~(e v -  ~,,)/2. The two rates have the ratio of exp[/?(e v, -e~) ] ,  the 
Boltzmann factor. This immediately gives to the equilibrium distribution 

Oo(V) = e-~v (6.13) 

in the absence of the drifting term (u--0). When u ~0 ,  the Boltzmann 
distribution is no longer a zero mode of (6.11). As u deviates from zero, the 
pole of the original zero mode gets shifted to 2(u) < 0. In Appendix E, we 
show that 2(u) depends quadratically on u as in (6.4). We find that the 
diffusion constant is given by 

{ Z v  (08v)2 e -'se* } 2 

D = h2 d Z, ,  e -~"  Z,,,r W.,,,,e-~(~*+ e')/2((~e v - 8Gv,) 2 (6.14) 

where d is the dimension of the tight-binding lattice. When the temperature 
is much higher than the bandwidth 3, we may replace the Boltzmann 
factors by unity. Thus, 

2 ( (8~ , )2)  2 

D = ha--- ~ (1/Ns)  Y,,,,,, W,,v,(Se,, - 8~v,) 2 
(6.15) 

where the angular brackets denote average over the energy band. 
The quantity W,,, can be written more explicitly as 

m v v '  = ~ s  - d72 e i(v v')Xei(e*'-e"c)z/h 

x y ,  Fu,(,c , x ) e  -i( ' '+')(t+r)/2 (6.16) 
LI" 

where Fu,('c, x) was given in (3.9). For temperatures lower than the Debye 
temperature, we may expand the exponential in the expression (3.19) for 
Fu,(z,  x). The first-order term is zero, due to energy and momentum 
conservation. A somewhat tedious but straightforward evaluation of the 
second-order term gives D ~ l I T  2s l, where s is the power of co with which 
the quantity J(co) in (4.4) goes to zero. For short-ranged interaction, s = 5, 
so D ~ l I T  9, in agreement with Gogt)lin. (35) For a piezoelectric interaction, 
s = 3, so D ~-, 1 / T  5. 
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6.3. High Temperature  

What will happen when the temperature gets high? Let us look back 
to Eq. (6.10). The temperature dependences of flap(u) and Sm(U, 2) are quite 
different. The Frank-Condon factor decreases exponentially with tem- 
perature, so do 3 and flap(u). However, the Frank-Condon factor in 
Sl(u, 2) in (6.7) will be largely canceled by Pu,(~o, k), which grows 
exponentially with temperature for ! '=  -!.  Therefore, we can no longer 
ignore the u dependence in Sl(U, 2). As the temperature is raised to a 
certain point, the linear u correction to $1(0, 0) will dominate the ~,,(u) 
term, marking the transition out of the coherent regime. 

At very high temperatures we can ignore all the exponentially small 
terms; then (6.10) becomes 

)t0(v) = 2 ~ F(~, k) )t2 + co2 
I co, k 

• [ - e  ~h~/go(v)+cos(ul)e~hC~ (6.17) 

where F=-Fu, with l ' =  - / ,  and is actually independent of 1 dues to the 
cubic symmetry of the system. This equation has the solution of 0(v)= 
const, with 

3 )  k) 22 2 = z  g ~ P(o, ~ [ - e  flhoo/2q_ (cos(ul)>e~h~o/2] (6.18) 
co, k 

where z is the coordination number of the lattice, and the angular brackets 
denote an average over 1. Finally, we let 2--+ 0+ on the right-hand side of 
the above expression, and substitute (3.19) into it; we obtain 

(;7 o 2 = z dr F(~, 0 ) [ -  1 + (cos(u/))]  (6.19) 

where z is the coordination number of the tight-binding lattice, and F(r, x) 
is just Fw('c, x) in (3.19) with ! ' =  -1. The diffusion constant is then given 
by 

J(k)sinZ(kll/2)cos(a~kr)l_l } 
D=12(h)2fo d z { e x p [ 4 ~  sinh(flh(Ok/2 ) (6.20) 

The physics behind these arguments can be more clearly seen by 
examining the self-energy operator (3.20) in the position representation. At 
high temperatures, the terms with 1'= - !  dominate, so that 
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<zl G(,~)Iz'> 
(~__--)2 { e ~h~~ e r 

= ~ Z P(~o, k) fix x,6y y, 6 x ,,,6y y, 
o) ,k 2 + i c 0  ' ' 2 + i e )  ' ' 

e/~h~o/2 eik(y -- x) ) 
+ e flhw/2dik(x--Y)(~x,x,+lf~y,y,+l~ 2+i(0 Oxx', -- I(~yy --t~ (6.21) 

It is noted that only the diagonal transitions take place, i.e., the changes in 
x and y are the same. This is in fact a general feature of high-temperature 
transport theory known as the quasiclassical limit. (36) 

7. CONCLUSION AND DISCUSSION 

In summary, we have studied the question of quantum coherence for 
a narrow-band particle interacting with phonons and static disorders. We 
have focused our attention on the transition probability P(xf, x0, t) for the 
particle to move from position x 0 to xf in time t. The calculation of 
P(x:, Xo, t) and its properties has been reduced to an eigenvalue problem 
in the phase space of the particle, i.e., the space coordinated by the two 
position variables appearing in the particle density matrix. The reduction is 
essentially a renormalization of the tunneling amplitude by the Frank- 
Cordon factor, followed by an expansion in the small parameter 3/(he)a), 
i.e., the ratio of the renormalized bandwidth to the Debye energy of the 
substrate lattice. The eigenvalue problem is simple yet general enough to 
serve as a convenient basis for further explorations of the various regimes 
and their interconnections: low temperature versus high temperature, weak 
versus strong static disorder, two wells versus an array of wells. 

We have studied the two-well problem in great detail. We have 
obtained complete solutions for P(x:, Xo, t) in the case of low temperature 
but arbitrary bias, and the case of zero bias but arbitrary temperatures. We 
have demonstrated how the particle motion becomes incoherent as the 
temperature or bias is increased. In the extreme cases, our results agree 
with earlier ones in the literature. TM 19) These results provide useful guidance 
in our study of the many-well cases discussed below. 

For the case where the site energy disorder becomes much stronger 
than the tunneling amplitude, we have derived a master equation for the 
particle motion. We have found a rather surprising result in the regime 
defined by 3~&~kB T,~hcoa. The diffusion constant is independent of 
the disorder if the particle couples with the phonons through the piezo- 
electric effect, and it increases with disorder if the coupling is mediated by 
a short-ranged interaction. We also find that the diffusion constant depends 
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linearly on temperature, and depends quadratically on the renormalized 
tunneling amplitude. 

In the translationally invariant case, we have rederived the Boltzmann 
equation at low temperatures, yielding D ~ T  1-2s, where s = 3  for 
piezoelectric coupling and s =  5 for short-ranged interaction. At higher 
temperatures, the Boltzmann desciption breaks down, and a transition to 
incoherent hopping occurs. We have confirmed the Holstein formula for 
the hopping rate on more rigorous grounds. 

In this paper, the term "incoherence" is used to indicate the 
Markovian nature of the particle motion in positional basis. There 
is, however, a difference between the incoherence occurring at high 
temperatures and that induced by disorder at low temperatures. The 
physical principle operating in the former case is the quasiclassical 
tendency, the tendency to move in parallel witgh the diagonal (x = y) of the 
phase space. In the strongly disordered case, the phase space diagonal itself 
acquires a special meaning. It decouples from the off-diagonal sites, and 
becomes the main channel for the particle motion. 

It should be noticed that even at zero temperature, the relaxation rate 
F is nonzero for the two-well case, biased or unbiased. One might think 
that this is the reason for the temperature independence of the diffusion 
constant reported in refs. 26 and 27. In view of our results for the case of 
an infinite lattice, one has to conclude, however, that this is not the case. 
We expect that the zero-bias and zero-temperature relaxation rate should 
go as F ~ J ( 2 6 J / h )  [see Eq. (4.20)] for a multiwell case, where fig is the 
level spacing of the renormalized particle Hamiltonian. This rate decreases 
to zero as the number of wells increases to infinity. The coherence of the 
particle motion makes it impossible to obtain a finite diffusion constant at 
zero temperature. 

It is also noticed that the coherence (in zero bias) persists up to a 
temperature of the order of the Debye temperature rather than the 
tunneling amplitude. This is in line with the results of Leggett et a/., (19) who 
have studied the general case of a two-well particle interacting with a heat 
bath through the coupling spectral function J(co)~co s [see (4.4)]. They 
concluded that the transition to incoherence occurs at kBT=O for 
0 < s < 1, and at kB T ~  ho~c(A/hOgc) 2- s for 1 < s < 2, where Oc is a typical 
frequency of the heat bath modes. It is easy to see from (4.40) that the 
transition takes place at kB T ~ hoc for s > 2. For  the piezoelectric coupling 
we have s = 3, and for the short-ranged interaction we have s = 5. Thus, a 
narrow band does not necessarily imply an incoherent motion. In fact, the 
low-temperature relaxation rate goes like F,-~ ~s, whose ratio with the 
tunneling amplitude decreases with A for s > 1, indicating that the motion 
is more coherent when the bandwidth gets narrower. The important 
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scattering phonons have frequencies of the order of the renormalized 
bandwidth of the particle, and their spectral weight decreases with 
decreasing frequency. 

Finally, it should be pointed out that the incoherent hopping rate at 
high temperature is proportional to the square of the bare tunneling 
amplitude A rather than the renormalized one, zJ. The Frank-Condon 
factor cancels out. In ref. 13, the high-temperature rate of Flynn and 
Stoneham (37/was used, but the tunneling amplitude was still interpreted as 
the renormalized one. We think this is inappropriate. 

A P P E N D I X A .  SITE ENERGY CHANGE DUE TO 
DISPLACEMENTS OF LATTICE A T O M S  

Suppose the particle interacts with the lattice atoms through short- 
ranged repulsive forces. The potential wells seen by the particle are 
centered at the interstitials of the atomic lattice. Suppose the lowest level 
energy e(L) of a potential well depends on the linear dimension L of the 
well. If {Xj} are the positions of the lattice atoms bordering a well, the 
length scale L may be taken as 

i ~  q 1/2 L = (Xj-- x)2J (A.1) 

where x is the center of mass of {Xj}. This choice of L is invariant under 
uniform translation of the bordering atoms, as it should be. 

Expanding to first order in the displacements X j - X  ~ and re- 
expressing them in terms of the phonon field operators, we then obtain the 
correction to the site energy as given in (2.3). The coupling function g(k) 
has the expression 

h ) 1/2 
e'(Lo) 2 M - 7 ~  Z ( X ~  x). eke/k(x~ x~ (A.2) 

J 

where x now stands for the center of mass of {X~ and ek is a polarization 
vector of the phonon mode. 

At small k we may expand the exponential in (A.2). The zeroth-order 
term is zero because Zj  ( X ~  = 0  by definition. The first-order term 
gives g(k) ~ k/x/--~t. The estimate (2.4) follows from a dimensional analysis 
of (A.2). 
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A P P E N D I X  B. R E D U C E D  D E N S I T Y  M A T R I X  A N D  
I N F L U E N C E  F U N C T I O N A L  

With a generalization of the "bra-ket" notations in (2.11) to the system 
of our particle plus phonons, we have in place of (2.12) 

at Ip~o~(t)> = ~o~(t) IP~o~(0 > (B.1) 

where ~tot(t) is the Liouvillian operator correspondings to Hto,(t) in (2.8). 
This is integrated with the initial condition [P,ot(to)> = [Zo>| [Pph(t0)>, 
where [pph(t0)> corresponds to the canonical distribution of phonons given 
in (2.7), yielding 

[Ptot(/) > ~--- dt~_ ~. . .  dt l  
n = O  0 0 

x e r162 '~ ~,(t~_ 1)"" ~h(tl) Izo> | Ipph(to)> 
(B.2) 

where ~ L  corresponds to HI + HL, and 

~h( t )  = e (~s+ ~L)(, ~o) 5ah(t) e ~+~'~( ' -~~ (S.3) 

with everything else defined as in the text. We can then insert in (B.2) the 
complete sets {Izj>(zjl} for the particle sector, and trace out the phonon 
degrees of freedom, yielding 

(zfl tr ]Ptot(t)> 

= dt~ _ ~ . . -  dt~ ~ 
n=0 to to {zj} 

x ( z f l  ~ ( t , ) I z ~ _ , ) ( z ~ _ l [  5~h(t . 1 ) ]Z ~_ 2)" ' "  (zll ,~h(/X)[ZO> 

x exp 2(zj)( t j+ 1 - 
j 1 

x t r{e  ~'~(~s)(' ~)e ~(~"-~)('"-~" ~ - ' - e  ~L(~~176 IPph(to)>} (B.4) 

where ~ L ( Z ) =  (Z[ L~L Iz) now acts only on the phonon degrees of 
freedom. In the above and hereafter, tr means tracing out of the phonon 
degrees of freedom. If the phonon coordinates are collectively denoted as 
R, then the phonon phase space is coordinated as (R, R'). The trace 
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operation in the "bra-ket" notation is simply, t r ] p )  =ZR=R'  <R, R' IP)' 
Recall that the reduced density matrix is defined as 

p(zf, t ) =  (Z:] tr [Ptot(/)) (B.5) 

The expression (B.4) is just (2.17) with 

exp(qS[z]) = tr { e-~'L(z: ~('- t~) e~':'(z, ~l(t,- ,~_ ~) . . .  z~'~L(zo)(,1 ,o) IPph(to) > } 

(B.6) 

The usual definition for the influence functional is, in our language, 

exp(qS[z]) = tr IPph([z], t ) )  

0 

(B.7) 

where 

(B.8) 

The two definitions are the same, if we make the recognition of z~ as 
defined in (2.16). Finally, the expression (2.18) for the influence functional 
has been calculated in ref. 15. 

APPENDIX  C. EVALUATING THE INFLUENCE F U N C T I O N A L  

For a particular path of n jumps, we can use (2.16) to carry out the 
double-time integral in (2.18). The result is a sum over contributions from 
the pieces of the r-s plane partitioned by the times {tj}. (19/ After some 
rearrangements, we have 

~ [ z ]  = - - ~  J ( k  ) [co th( f lhc%/2  ) F 1 - iF2] 
k 

F~ = ~ (UjUj*-- UjULI ) 
j=o 

+ s COSO')k(tj+l--lj r)(Uj+I-Uj)(U~ r - U L r _ l )  
j = O  r= O 

Fz = ~ Uj Vj*ok( t j+ 1 - tj) 
j = o  

J 

+ ~ ~ s i n c % ( t : + l - t :  r ) ( S j _ b l - S j ) ( r ~ _ r - r L r _ l  ) 
j = O  r= O 

where J(k) and the U's and V's are defined in (2.2t). 

(c.i) 
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A number of simplifications are in order. First, since I g(k)[ and u) k are 
invariant under k ~ - k ,  the first sum in the expression for F1 can be 
replaced by 

1 ~ 2 1 1 
,I +~ IUo12+~ lUll ~ (C.2) 

j = l  

and the first sum in F2 can be replaced by zero. These replacements do not 
change the value of q~[z]. Second, since ~h(t j )= 0 for tj < 0, we can replace 
the lower limit to of the multiple integrals over {tj} in (2.17) by zero. Third, 
since Zo and zn=z r are diagonal, i.e., yo =xo  and Yn=Xn, we have 
Uo = Un = 0. We can therefore write 

1 " 
F1 = 2 j ~ o  t U j -  Uj 112 

n 1 j - - I  

4- ~ • COScok(tj+l--tj_r)(Uj+l--Uj)(ULr--ULr_l) 
j=l  r=o (C.3) 

n - - 1  j - - 1  

F2= 2 2 sincok(tj+l-tj-r)(fJ+t-Uj)(V~ r--V~--r--1) 
j - - 1  r = 0  

n 1 

+ ~ sincok(tj+l--to)(Uj+~-- UflV~" 
j = 0  

Finally, we let to---> -oo .  This now only affects the last sum in F2 in the 
above expressions, whose contribution to 45[-z] approaches zero, because 

J(k)(Uy+, - U9) V*~i(co --COk) (C.4) 
k 

does not have sharp peaks as a function of frequency co. In fact, for 
any finite time t, (xj, yj) are at finite distances from Xo. Therefore, 
(Uj+ ~-Uj)V0 is a smooth function of k and vanishes quadraticcally with 
k as k ~ 0. According to discussions in Section 1, the quantity (C.4) should 
behave smoothly near co = 0. Finally, since J(k) does not have sharp peaks 
away from k = 0, we expect the quantity (C.4) to have no sharp peaks in co. 

With all these simplifications, we can now rewrite (2.17) as 

(z f lp(t))= dtn dt~_~ ..- dt~ ~, 
n=O {Zj} 

X (ZfI Aeh Iz,_I>(Z,_IIL/~h IZn Z)'"(Zl] ~ IZo> 

xexp {2(zo)tl + ~ 2(z~)(tj+l--tj)} exp(q~o[z])exp('l~l[z]) 
j = l  

(c.5) 
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where 

qS~ = -2j~1= ~J (k )co th  [Uj- Uj_~J 2 
n - - l j  1 

</,~[z]= ~ ~ f(tj.l--t;_,;z:.~,zj, zj ,,z;_,_~) 
j = l  t = 0  

f(..-) = -  ~ J(k){coth ( ~ - ~ ) c o s  c% ( t j + l - - t j - - r )  

x(uj+,-uj)(uL~-uL~ ,) 

V*r  ,)} (C.6) ~ i s i n ~ k ~ t j  ~ l ~ t j  ~ ~ ~ ~ U j  ~ l ~ U j  ~ ~ V ~  ~ ~ 

The factor exp(O51[z]) is just the product of Fj/ in (2.19). 
Finally, the time-independent factor exp(05o[Z]) can be absorbed into 

the hopping matrix elements as 

<zl 2~,, Iz'> --' <zl 2,,, Iz'> 

[ 1~ J(k,c~ ] -(zl2,e~,lz ')exp - ~  \ 2 J I U - U ' }  2 (C.7) 

Written explicitly, we have 

<x, yP 2h Ix', y'} 

= -~ ~ { ( x [ x' + t ) ( y' l y > exp [ -1- ~' J (k ) c~ ( flh~k ) [eik* - e't~' t 2 k 

A 
= g ~ t  { ( x l x ' + l } ( y " l y } - ( x l x ' } ( y ' l y + l } }  

where we have used the constraints implied by (x tx '  + l )  and so forth. 
For an atomic lattice of cubic symmetry, the exponential in the last line of 
the above equations is independent of the direction of the nearest neighbor 
lattice vector 1, and can be factored out as in (2.20). These arguments are 
still valid even if the particle is restricted to a subset of the sites (potential 
wells). 
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APPENDIX D. THE DOUBLE-LEVEL TRANSITION 
PROBABILITY 

In order to find the probability P(xf, Xo, )~) in (3.15), we need to know 
X~(2), which is the Laplace transform of Xl(t) given by 

(Z[ ~'1(/)IZ') = E IF(t, z, Z 1 ,  Ztl, Z t) - -  1] 
ZlZ l  

x <zl ~----~h [zl><zl[ e ~  [z'l><z]l ~h [z'> (D.1) 

where z now stands for the pair (x,y). The Liouvillian operators are 
given by 

~ = & + ~  

J 
Ix, y )  = ~  (l~, y ) - I x ,  Y)) (D.2) 

8 
~,lx, y) = ~  (x-  y)Ix, y) 

where ~? = - x ,  )3 = - y ,  and ex is the site energy of the site x = xlff2. 
Therefore, 

2 

Iz'l><z'll ~h Iz'> =~  y' ih ([2 ', ) (~xiy.'(~yly'-- tX', fi ') (~xlx,(~yly,) 

(D.3) 

Substituting the above relations into (D.1), we have 

(Z lS l ( t )  l z ' )=  { - ( 2 ,  yle'~ptlff',y'>(eXX'gIt+ihe/2)-l) 

- (x, Yl e "r Ix', P')(e yy'g(' iha/2) 1) 

+ (s Yl e "~P' Ix', P')(e -xy'g('-ih~n)- 1) 

+ (x,  Yl e ~ '  I~', Y')(e -y~'g('+ih~/2)- 1)} (D.4) 

where g(t) is given in (4.9) and we have used the following relation: 

g ( t +-- i ~ )  = 4 f?  ~ J(~ Ic~ ( ~ )  c~176 -T- i sin(cot) ] (D.5) 
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Using the Pauli matrices (4.6), one can write the particle Liouvillian 
..~/, as 

2 p  = ~ [ (3a l  + ~a3) - (3a~ + ea;)]  (D.6) 

It can then be shown that 

Z l ( t )  = (A/h)2{ - ol e ~ '  at C(t + ihfl/2) - a3 a~ e ~ '  al a3 S(t  + ihfl/2) 

a,l e2pt a,l C( t _ .  , ,  ~e, , , -- t h f i / 2 ) -a3 t r l e  a l a 3 S ( t - i h f i / 2 )  

+ al e~ 'a ' l  C ( t -  ihfi/2) - a3al e2P'a'l #3 S ( t -  ihfi/2) 

+ a ' l e - % ' a ~ C ( t + i h f i / 2 ) - # 3 a ' l e ~ e ' a t a 3 S ( t + i h f i / 2 ) }  (D.7) 

where C(t) = cosh[g( t ) ]  - 1 and S(t)  = sinh[g(t)] .  
The operator ~ e  is diagonalized by the following transformation: 

e+iO(~2+~i)~pe_iO(o2+, ~, ~2 2 ) = _  (a3 - a;)  (D.8) 
ih 

where ~ = ( 3 2 + e 2 )  ~/2 and 0 = ( 1 / 2 ) t a n  ~(3/~). Under the same transfor- 
mation, the self-energy operator X1(2) becomes -~(2)  as is given in 
(4.8)-(4.10) in the text. 

A P P E N D I X  E. E V A L U A T I N G  T H E  D I F F U S I O N  POLE 

As u ~ 0, the drift term can be treated as a small perturbation. We first 
symmetrize the collision kernel by writing 

~b(v) = e - ~,/2 ~(v) (E. 1 ) 

Then ~b(v) satisfies the equation 

2~(v) = OoC'(v) + Ol q~(v) (E.2) 

where 

Qo~(V) = ~ Wvv, l-~b(v') - eB~'-"')/2~b(v)] 
v, (E.3) 

0g, 
Olf f (v )  = u ~ -  r  

We now apply the Lanczos iterative method to evaluate •(U). (38) We 

822/65/1-2-24 
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take ~bo(V ) = e - ~ / 2  as the starting state. We first calculate Q~bo, project it 
onto ~bo, and call the remainder ~bl. We thus have 

where by definition 

2~bo = a~bo + ~b~ (E.4) 

a =  ~ ~bo(v ) Q~bo(v)/~ ~bo(V)~bo(V) (E.5) 
v 

The coefficient a is actually zero, because #o is a zero mode of Qo and the 
thermal average of Q1 = u 6e,/ih is zero. Next, we calculate Q~bl(V), project 
it onto ~bo and ~bx, and call the remainder ~bz. Therefore 

where 

L~I = b~0 + C~l + ~2 (E.6) 

z. Q  otvt/  
(E.7) 

Note that while b goes to zero quadratically with u, c approaches a finite 
constant. 

If we ignore ~b2 in (E.6), we then have a two-dimensional eigenvalue 
problem (E.4) and (E.6) to solve. The eigenvalues are easily found to be 

~(U) = 1[C • (C 2 + 4b) 1/2] 

�89 [c _ c(1 + 2b/c2)] (E.8) 

where in the second step we have used the fact that/J ~ c 2 as u goes to zero. 
The solution with the negative sign in (E.8) goes continuously to zero as 
u--* 0, and corresponds to the diffusion mode. We thus take 2(u)= -b /c .  
The expressions (6.4) and (6.14) in the text then follow from (E.7). D is 
isotropic because of the cubic symmetry of the lattice. 
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